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Abstract. The free quantum states of topologically massive electrodynamics and gravity in
2+ 1 dimensions are found explicitly. It is shown that in both theories the states are described
by infrared-regular polarization tensors containing a regularization phase which depends on the
spin. This is done by explicitly realizing the quantum algebra on a functional Hilbert space and
by finding the Wightman function to define the scalar product on such a Hilbert space. The
physical properties of the states are analysed defining creation and annihilation operators.

For both theories, a canonical and covariant quantization procedure is developed. The
higher-order derivatives in the gravitational Lagrangian are treated by means of a preliminary
Dirac procedure.

The closure of the Poincaré algebra is guaranteed by the infrared-finiteness of the states
which is related to the spin of the excitations through the regularization phase. Such a phase
may have interesting physical consequences.

1. Introduction

The topological mass arising from the Chern–Simons term in(2 + 1)-dimensional
topologically massive gauge theories [1–3], provides, at the quantum level, an infrared
cut-off which seems to cure the infrared problem without disturbing the ultraviolet or
gauge properties of these theories. However, as recognized already in the seminal work by
Deseret al [3], a few delicate points, concerning the infrared behaviour of these theories,
need careful treatment. In particular the closure of the Poincaré algebra seems to be
subordinate to a particular definition of the phase of the field operators [3].

In this paper we shall perform a careful analytical derivation of the free quantum states
of topologically massive planar theories, devoting particular attention to the treatment of
the infrared ambiguities. Exact knowledge of the states of these theories leads to that of the
polarization tensors. For electrodynamics, the states are known but infrared-ambiguous [4],
whereas for gravity, they have not yet been studied. We shall show that in both theories
the states are described by infrared regular polarization tensors containing a regularization
phase which depends on the spin. Such a phase was first introduced in [3].

For electrodynamics, an infrared modification of the polarization vector of physical
photons leads to interesting consequences in phenomenological applications of the
interacting theory with fermionic matter. In particular, the correct form of the polarization
vector might help in proving the conjectured existence of fermion–photon bound states [5].
In the gravitational case, the calculation of the polarization tensor of physical gravitons
might be considered as a first step toward the understanding of some questions arising, at
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the quantum level, in the relation between the first- and second-order formulations of the
theory [6].

In what follows we shall use a general procedure [7, 8] to construct the Hilbert space
of the physical states and its scalar product. The latter is defined in terms of the pertinent
two-point Wightman function which we shall explicitly compute for both topologically
massive electrodynamics and gravity. Such a procedure has also been succesfully used in
constructing Fock spaces with generalized statistics [9].

We shall perform a canonical analysis keeping account of both the constraints related
to gauge invariance and those, arising in the gravitational case, due to the higher-order
derivatives of the Lagrangian. In order to always work with well defined quantities one
needs a careful definition of the action of the operators on the quantum states; this is
achieved by introducing a suitable set of test functions.

We analyse topologically massive electrodynamics and gravity simultaneously, taking
as Lagrangians

Lelec= − 1
4FµνF

µν + 1
2µEµνρ∂µAνAρ (1)

Lgrav= √gR + 1

2µ
Eµλν0ρλσ

(
∂µ0

σ
νρ + 2

30
σ
µξ0

ξ
νρ

)
. (2)

In section 2 we shall define the canonical variables and brackets in electrodynamics
and linearized gravity, using in both cases a covariant gauge choice, Lorentz and Landau,
respectively. For linearized gravity a preliminary Dirac procedure is needed. This allows
us to find the canonical brackets consistent with the second-class constraints introduced
when enlarging the configuration space to the time derivatives of some components of the
metric [10].

In section 3 we shall derive the two-point Wightman functions by solving the Cauchy
problem arising from the equations of motion and the equal-time commutators. For
linearized gravity the derivation turns out to be quite difficult, since it involves a third-
order Cauchy problem. Nevertheless, for both theories, the explicit solution of the Cauchy
problem is provided.

In section 4 we construct the Hilbert space of the physical states deriving the expression
for the one-particle states. The polarization tensors constructed in this section are well
defined in the infrared. As a consequence, the states we exhibit are the only possible states
allowing for the weak closure of the Poincaré algebra.

In section 5 we analyse the physical properties of the quantum states, their mass and
spin. To achieve this result we perform a normal-mode expansion obtained in terms of the
Wightman function.

Section 6 is devoted to some concluding remarks.

2. Canonical brackets

Let us start by introducing the canonical variables and by finding the canonical brackets of
topologically massive electrodynamics and linearized gravity. We choose, in the framework
of an indefinite metric Fock space, covariant gauges to maintain explicit Lorentz invariance.

2.1. Electrodynamics

The gauge-fixed Lagrangian is, in the Lorentz gauge∂µA
µ = 0,

L =− 1

4
FµνF

µν + µ
2

Eµνρ∂µAνAρ − 1

2ξ

(
∂µA

µ
)2

(3)
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leading to the equations of motion

� Aµ + (ξ − 1) ∂µ∂νA
ν + µEµνρ∂νAρ = 0 . (4)

The Lagrangian (3) is regular, i.e. det
(
∂2L/∂ (

∂0Aµ
)
∂

(
∂0Aν

)) 6= 0, and the canonical
momentum

πµ = ∂L
∂

(
∂0Aµ

) = Fµ0+ µ
2

E0µνAν − ξηµ0∂νA
ν (5)

can be uniquely inverted to obtain the velocities. The Hamiltonian version of the theory is
constructed in the usual way; the only non-vanishing canonical Poisson bracket is

{Aµ (x, t) , πν (y, t)} = ηµνδ2 (x− y) . (6)

The energy–momentum and angular-momentum tensors have the usual form

T µν = πρ(µ)∂νAρ − ηµνL (7)

Mαµν = xµT αν − xνT αµ + πρ(α) (6µν)ρτ A
τ (8)

where

πρ(µ) = ∂L
∂

(
∂µAρ

) (9)

and

(6µν)ρτ = δµρ δντ − δµτ δνρ (10)

is the spin matrix of the fieldAµ.
The quantum version of the theory is obtained using the correspondence principle

{A,B} → −i [A,B] (11)

and defining the physical states as the ones destroyed by the annihilation part of∂ · A(
∂µA

µ
)− ∣∣8f 〉 = 0 . (12)

2.2. Gravity

To perform a canonical analysis of the topologically massive gravity we consider its
linearized version,gµν = ηµν+khµν , with the Minkowski signature diag

(
ηµν

) = (+,−,−).
The linearized Lagrangian is invariant under the Abelian gauge transformations

δhµν = ∂µξν + ∂νξµ . (13)

To fix the gauge we then select the Landau gauge∂µh
µν = 0. The linearized Lagrangian

is [3]

L = − 1
4

[(
∂ρhµν

)
(∂ρhµν)− (

∂µh
)
(∂µh)+ 2(∂νh)

(
∂µhµν

)+ 2
(
∂µhµν

) (
∂ρh

ρν
)]

+ 1

4µ
Eµαβ

(
∂α∂νhρ

β − ∂α∂ρhνβ
)
∂νhµρ − 1

2ξ

(
∂µh

µλ
)
(∂νh

ν
λ) . (14)

Since (14) contains second-order derivatives, the equations of motion are third order{
�hµν + ∂µ∂νh+ (ξ − 1) (∂ν∂αh

αµ + ∂µ∂αhαν)− ηµν
(
�h− ∂α∂βhαβ

)
− 1

2µ

[Eµαβ∂α (
�hβν − ∂ν∂λhλβ

)+ Eναβ∂α
(
�hβµ − ∂µ∂λhλβ

)]} = 0 . (15)
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In general the order of the equations of motion should be twice that of the Lagrangian;
the fact that this does not occur here is the first evidence of the constrained nature of this
theory. In fact, the Lagrangian is singular, i.e. det

(
∂2L/∂ (

∂0∂0Aµ
)
∂

(
∂0∂0Aν

)) = 0. In
equation (14) all the dependence from the second-order derivatives lies in the Chern–Simons
Lagrangian, whose only non-vanishing terms are

LCS = 1

4µ
Eij

(
∂khi0− ∂0hik

) (
∂0

)2
hk
j . (16)

Therefore, only the space–space components ofhµν have higher-order dynamics.
To extend the Hamiltonian formulation to this case, one needs to decouple the second-

order time derivatives, so that the dynamics becomes first order in time. This is done by
defining an additional canonical variable for the time derivative of each variable having
higher-order dynamics. One can then extend the definition of the canonical momentum
so that the formal structure of the canonical Legendre transformation is maintained [10].
This procedure has been applied to topologically massive gravity in [11, 12], whereas the
canonical formulation of the full nonlinear theory has been analysed in [13].

At variance with [12], it is clear from (16) that it suffices to take as independent canonical
variableshµν andkij = ∂0hij , together with their respective conjugate momenta, defined as

πµν = ∂L
∂

(
∂0hµν

) − 2∂ρ
∂L

∂
(
∂ρ∂0hµν

) + ∂0
∂L

∂
(
∂0∂0hµν

) (17)

sij = ∂L
∂

(
∂0∂0hij

) . (18)

In terms of the above variables, everything works essentially as usual, except for the fact
that the phase space has been extended. In particular, the only non-vanishing canonical
Poisson brackets are{

hµν (x, t) , παβ (y, t)
} = 1

2

(
ηµαηνβ + ηµβηνα) δ2 (x− y) (19){

kij (x, t) , smn (y, t)
} = 1

2

(
ηimηjn + ηinηjm)

δ2 (x− y) (20)

and the energy–momentum and angular-momentum tensors become

T µν = πρτ(µ)∂νhρτ + sij (µ)∂νkij − ηµνL (21)

Mµαβ = xαT µβ − xβT µα + πρτ(µ) (6αβ
)
ρτ

λσ hλσ + sij (µ)
(
6αβ0λ

)
ij

ρτ ∂λhρτ (22)

where

πµν(α) = ∂L
∂

(
∂αhµν

) − 2∂ρ
∂L

∂
(
∂ρ∂αhµν

) + ∂0
∂L

∂
(
∂0∂αhµν

) (23)

sij (α) = ∂L
∂

(
∂α∂0hij

) (24)

and

(6µν)
ρταβ = 1

2

[
ηµρηναητβ + ηµτηνβηρα + (α ↔ β)− (µ↔ ν)

]
(25)(

6µν0λ
)ijαβ = (6µν)

ijαβ
ηλ0− 1

2

(
ηµ0ηνλ − ην0ηµλ

) (
ηiαηjβ + ηiβηjα) (26)

are the spin matrices of the fieldshµν andkij .
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A straightforward calculation for the canonical momenta gives

π00 = −ξ∂0h
00+ (

1
2 − ξ

)
∂ih

i0 (27)

π0i = −1

2

[
ξ∂0h

0i + (ξ − 1) ∂jh
ji + 1

2∂
ih

]− 1

4µ
Emn

[
∂m∂ih0n − ∂mkin]

− 1

8µ
Emi

[
∂j k

mj − ∂j ∂jhm0
]

(28)

πij = −1

2

[
kij − ηij kl l + ηij ∂khk0

]+ 1

8µ

[Ekj (
2∂0k

ki − 2∂i∂0h
k0− 2∂k∂0h

i0

+ 2∂k∂ih00+ ∂l∂lhki − ∂i∂lhkl
)+ (i ↔ j)

]
(29)

sij = − 1

8µ

[Ekj (
kki − ∂ihk0

)+ (i ↔ j)
]
. (30)

From the trace of (29) and (30) follow the constraints

3 = πll − 1
2k
l
l + ∂khk0+ 1

4µ
Eki∂i∂lhkl ≈ 0 (31)

Oij = sij + 1

8µ

[Ekj (
kki − ∂ihk0

)+ (i ↔ j)
] ≈ 0 . (32)

This shows that the Lagrangian remains singular even after the gauge-fixing. This is due to
the fact that the constraints (31), (32), are not related to the gauge invariance (13), but to
the enlargement of the phase space produced by the introduction of the new variableskij .
These constraints are in fact second class. The canonical Poisson brackets are incompatible
with these constraints†. With this type of constraint we found it more convenient to apply
the Dirac procedure [14, 15], instead of the quicker method proposed in [16].

We have the four constraints

ϕ[1] = O11 ϕ[2] = O22 ϕ[3] = O12 ϕ[4] = 3 . (33)

No secondary constraints are produced by the dynamical compatibility condition; thus, the
complete set of constraints to deal with is given only by (33). The matrix of the Poisson
brackets of these constraints

M [a][b] (x,y, t) = {
ϕ[a] (x, t) , ϕ[b] (y, t)

}

= 1

2



0 0
1

2µ
−1

0 0 − 1

2µ
−1

− 1

2µ

1

2µ
0 0

1 1 0 0


δ2 (x− y) (34)

is non-singular.

† The meaning of the weak equivalence sign≈ appearing in the constraints is to recall that they are incompatible
with the canonical Poisson brackets.
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The Dirac brackets, defined by

{A (x, t) , B (y, t)}∗ = {A (x, t) , B (y, t)} −
∫

d2z

∫
d2w

{
A (x, t) , ϕ[a] (z, t)

}
×M−1

[a][b] (z,w, t)
{
ϕ[b] (w, t) , B (y, t)

}
(35)

can be computed. After a lengthy but straightforward computation, we obtain{
kij (x, t) , kmn (y, t)

}∗ = 1
2µ

[E imηjn + (i ↔ j)+ (m↔ n)
]
δ2 (x− y) (36){

hij (x, t) , kmn (y, t)
}∗ = ηijηmnδ2 (x− y) (37){

π0i (x, t) , π0j (y, t)
}∗ = − 5

64µ
E ij ∂k∂kδ2 (x− y) (38)

{
π0k (x, t) , πmn (y, t)

}∗ = 1

64µ2
E ik (Emj∂n + Enj ∂m)

∂i∂j δ
2 (x− y) (39)

{
sij (x, t) , smn (y, t)

}∗ = 1

32µ

[E imηjn + (i ↔ j)+ (m↔ n)
]
δ2 (x− y) (40)

{
π0k (x, t) , smn (y, t)

}∗ = 1

32µ

(Ekm∂n + Ekn∂m + ηmnEkj ∂j
)
δ2 (x− y) (41){

hµν (x, t) , πij (y, t)
}∗ = 1

2

(
ηµiηνj + ηµjηνi) δ2 (x− y) (42){

hij (x, t) , π0k (y, t)
}∗ = 1

8µ
ηijEkm∂mδ2 (x− y) (43){

h0µ (x, t) , π0ν (y, t)
}∗ = 1

2

(
ηµν + ηµ0ην0

)
δ2 (x− y) (44){

kij (x, t) , smn (y, t)
}∗ = 1

4

(
ηimηjn + ηinηjm − ηijηmn) δ2 (x− y) (45){

kij (x, t) , π0µ (y, t)
}∗ = 1

8

(
ηµi∂j + ηµj∂i + 3ηij ∂µ

)
δ2 (x− y) (46){

kij (x, t) , πmn (y, t)
}∗ = − 1

8µ
ηij

(Ekm∂n + Ekn∂m)
∂kδ

2 (x− y) . (47)

All the other brackets vanish.
The quantum theory is defined using the generalized correspondence principle

{A,B}∗ → −i [A,B] (48)

and defining the physical states as those satisfying(
∂µh

µν
)− ∣∣8f 〉 = 0 . (49)

3. Two-point functions

We are particularly interested in the Wightman function, since this is the two-point function
that enters in the definition of the scalar product of the physical Hilbert space. In terms of
the Wightman functionW(i)(j) (x − y)† the classical Pauli–Jordan function1(i)(j) (x − y),
giving the canonical brackets between the canonical variables, is expressed as

1(i)(j) (x − y) = −i
(
W(i)(j) (x − y)−W(j)(i) (y − x)) (50)

† Henceforth, we shall use simplified notation. We denote by(i) the set of all indices needed to describe the
theory; for electrodynamics,φ(i) = Aµ andη(i)(j) = ηµν , and for gravity,φ(i) = hµν andη(i)(j) = ηµν .
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while the propagator is given by

S(i)(j) (x − y) = θ (x0− y0)W
(i)(j) (x − y)+ θ (y0− x0)W

(j)(i) (y − x) . (51)

3.1. Electrodynamics

Consider the covariant Poisson bracket of two fields

1µν (x − y) = {Aµ(x), Aν(y)} . (52)

By definition, the1 function is a solution of the second-order equations of motion

�1µν(z)+ (ξ − 1) ∂µ∂α1
αν(z)+ µEµαβ∂α1β

ν(z) = 0 . (53)

The boundary conditions necessary for the uniqueness of the solution stem from the
canonical Poisson brackets; the equal-time Poisson brackets correspond to the zero-time
conditions for the1 function

1µν (z, 0) = 0 (54)

∂01µν (z, 0) =
(
ηµν + 1− ξ

ξ
ηµ0ην0

)
δ2 (z) . (55)

The 1 function is then the unique solution of the second-order Cauchy problem (53),
(54) and (55). Because of Lorentz covariance and the symmetry properties of the Poisson
brackets, the most general form allowed for the1 function is

1µν(z) = ηµνf1(z)+ Eµνρ∂ρf2(z)+ ∂µ∂νf3(z) (56)

wheref1, f2 andf3 are scalar functions. Inserting (56) into the Cauchy problem (53)–(55),
one finds for the Wightman function

W̃µν(p) = 2πθ (p0)
[
δ
(
p2

)
M(0)αβ(p)+ δ (

p2− µ2
)
M(µ)αβ(p)

]
(57)

with

M(0)αβ(p) = i

µ
Eαβρpρ −

(
1

µ2
− 1

ξ

1

p2

)
pαpβ (58)

M(µ)αβ(p) = −
(
ηαβ − p

αpβ

µ2

)
− i

µ
Eαβρpρ . (59)

The propagator reads

S̃µν(p) = − i

p2+ iε

[
−1

ξ

pµpν

p2+ iε

]
− i

p2− µ2+ iε

[
Pµν + i

µ

p2+ iε
Eµνρpρ

]
(60)

with

Pµν = ηµν − pµpν

p2+ iε
. (61)

3.2. Gravity

For gravity one can proceed in the same way, introducing the Pauli–Jordan function in terms
of the covariant Dirac bracket

1µναβ (x − y) = {
hµν(x), hαβ(y)

}∗
. (62)
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By definition, the1 function is a solution of the equations of motion, which in this case
are third order{
�1µναβ(z)+ ∂µ∂ν1ρ

ρ
αβ − ηµν (

�1ρ
ρ
αβ(z)− ∂ρ∂τ1ρταβ(z)

)
+ (ξ − 1)

(
∂ν∂ρ1

µραβ(z)+ ∂µ∂ρ1ρναβ(z)
)

− 1

2µ

[
Eµρτ ∂ρ

(
�1τ

ναβ(z)− ∂ν∂λ1λ
τ
αβ(z)

)
+Eνρτ ∂ρ

(
�1µ

τ
αβ(z)− ∂µ∂λ1λ

τ
αβ(z)

)]} = 0 . (63)

The boundary conditions necessary to define the Cauchy problem arise from the canonical
equal-time Dirac brackets. They read

1µναβ (z, 0) = 0 (64)

∂01ijmn (z, 0) = −ηijηmnδ2 (z) (65)

∂010µ0ν (z, 0) = 1

ξ
ηµνδ2 (z) (66)

∂01ij0µ (z, 0) = 0 (67)

(∂0)21ijmn (z, 0) = − 1
2µ

[E imηjn + (i ↔ j)+ (m↔ n)
]
δ2 (z) (68)

(∂0)21ij0µ (z, 0) = 1

ξ

(
ηiµ∂j + ηjµ∂i + ξηij ∂µ) δ2 (z) (69)

(∂0)21000µ (z, 0) = −1

ξ
∂µδ2 (z) (70)

(∂0)210i0j (z, 0) = 0 . (71)

The 1 function is the unique solution of the third-order Cauchy problem (63)–(71). To
determine1 explicitly we can again take advantage of the Lorentz covariance and symmetry
properties of the Dirac brackets to write the general form

1µναβ(z) = ηµνηαβf1(z)+
(
ηµαηνβ + ηµβηνα) f2(z)

+ [
ηµαEνβσ + (µ↔ ν)+ (α ↔ β)

]
∂σf3(z)+

(
ηµν∂α∂β + ηαβ∂µ∂ν) f4(z)

+ [
ηµα∂ν∂β + (µ↔ ν)+ (α ↔ β)

]
f5(z)

+ [Eµασ ∂ν∂β + (µ↔ ν)+ (α ↔ β)
]
∂σf6(z)+ ∂µ∂ν∂α∂βf7(z) (72)

wheref1, . . . , f7 are scalar functions. Inserting equation (72) in the equations defining the
Cauchy problem for1, after difficult algebraic manipulation we get the Wightman function

W̃µναβ(p) = 2πθ (p0)
[
δ
(
p2

)
M(0)µναβ(p)+ δ (

p2− µ2
)
M(µ)µναβ(p)

]
(73)

with

M(0)µναβ(p) = 2ηµνηαβ − (
ηµαηνβ + ηµβηνα)− i

2µ

[
ηµαEνβσ + (µ↔ ν)+ (α ↔ β)

]
pσ

−
(

1

µ2
+ 2

p2

) (
ηµνpαpβ + ηαβpµpν)
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+
(

1

µ2
+ ξ − 1

ξ

1

p2

) [
ηµαpνpβ + (µ↔ ν)+ (α ↔ β)

]
+ i

2µ

(
1

µ2
+ 1

p2

) [Eµασpνpβ + (µ↔ ν)+ (α ↔ β)
]
pσ

−
(

1

µ4
+ 1

µ2p2
− 3

ξ

1

p4

)
pµpνpαpβ (74)

M(µ)µναβ(p) = −
(
ηµν − p

µpν

µ2

) (
ηαβ − p

αpβ

µ2

)
+

[(
ηµα − p

µpα

µ2

) (
ηνβ − p

νpβ

µ2

)
+ (α ↔ β)

]
+ i

2µ

[
Eµασ

(
ηνβ − p

νpβ

µ2

)
+ (µ↔ ν)+ (α ↔ β)

]
pσ . (75)

The propagator follows using equation (51)

S̃µναβ(p) = − i

p2+ iε

{(
PµαP νβ + PµβP να)− 2PµνP αβ

+1

ξ

[
ηµα

pνpβ

p2+ iε
+ (µ↔ ν)+ (α ↔ β)

]
+ 3

ξ

pµpνpαpβ(
p2+ iε

)2

}

− i

p2− µ2+ iε

[
PµνP αβ − (

PµαP νβ + PµαP νβ)
−i
µ

2

pσ

p2+ iε

(EµασP βν + EνασP βµ + EµβσP αν + EνβσP αµ)] (76)

with, as before,

Pµν = ηµν − pµpν

p2+ iε
. (77)

4. Quantum states

We are now able to construct the physical Hilbert space which explicitly realizes the operator
algebras defined by equations (6) and (36)–(47). This is done by defining the action of the
field operators on a suitable space of states†.

Consider the vectorial spaceH = {|8〉} of the sequences

|8〉 =
{
φ0, φ

(µ1)

1 (p1) , φ
(µ1)(µ2)

2

(
p1,p2

)
, . . . , φ(µ1)···(µn)

n (p1, . . . , pn) , . . .
}

(78)

whereφ(µ1)···(µn)
n (p1, . . . , pn) ∈ S

(
R3n

)
is a completely symmetric tensor with respect to

the exchange(µi, pi)↔ (µj , pj ).

† The set of all regular functions defined inO is denoted byS(O). The µ-mass-shell is calledV +µ and the
corresponding integration measure is

d̃p
µ = d2p

2π
√

2p0

∣∣∣∣
p∈V+µ

= d3p

2π

√
2p0θ (p0) δ

(
p2 − µ2

)
.
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The spaceH so defined is the Fock space, and the functionφ
(µ1)···(µn)
n (p1, . . . , pn) is

then-particles component of the generic state; the scalar product is defined in terms of the
Wightman function as [7]

〈8| 9〉 =
∞∑
n=0

∫
d3p1

(2π)3
· · ·

∫
d3pn

(2π)3
φ∗n(µ1)···(µn) (p1, . . . , pn) W̃

(µ1)
(ν1) (p1) · · ·

×W̃ (µn)
(νn) (pn) ψ

(ν1)···(νn)
n (p1, . . . , pn) (79)

∀ |8〉, |9〉 ∈ H . Because of the Hermiticity of the Fourier transform of the Wightman
function, the scalar product has the essential property〈8| 9〉 = 〈9| 8〉∗, ∀ |8〉 , |9〉 ∈ H,
but, as we shall see, it is in general not positive-defined.

The action of the field operators in the space of the states can be defined using test
functions.

From the positive and negative frequency parts of the field operatorsφ(i)(x) =
φ+(i)(x)+ φ−(i)(x), one can define the smeared operators

φ±(i)[ϕ] =
∫

d3x φ±(i)(x)ϕ(x) = (
φ±(i), ϕ

)
. (80)

These operators have the following action on the vectors ofH [7]:(
φ+(i)[ϕ] |8〉)(µ1)···(µn)

n
(p1, . . . , pn)

= 1√
n

n∑
m=1

φ
(µ1)···(µm−1)(µm+1)···(µn)
n−1 (p1, . . . , pm−1, pm+1, . . . , pn) η

(i)(µm)ϕ̃ (pm)

(81)(
φ−(i)[ϕ] |8〉)(µ1)···(µn)

n
(p1, . . . , pn)

= √n+ 1
∫

d3p

(2π)3
W̃ (i)

(j)(p)φ
(j)(µ1)···(µn)
n+1 (p, p1, . . . , pn) ϕ̃ (−p) . (82)

By continuity, from equations (81), (82), one can obtain the action of the unsmeared
operatorsφ±(i)(x); this is usually achieved by replacing the test functions with Diracδ-
functions, obtaining(
φ+(i)(x) |8〉)(µ1)···(µn)

n
(p1, . . . , pn)

= 1√
n

n∑
m=1

φ
(µ1)···(µm−1)(µm+1)···(µn)
n−1 (p1, . . . , pm−1, pm+1, . . . , pn) η

(i)(µm)eipmx

(83)(
φ−(i)(x) |8〉)(µ1)···(µn)

n
(p1, . . . , pn)

= √n+ 1
∫

d3p

(2π)3
W̃ (i)

(j)(p)φ
(j)(µ1)···(µn)
n+1 (p, p1, . . . , pn) e−ipx . (84)

With the help of these definitions, one can easily see that the field operators satisfy the
equations of motion and the covariant commutation relations[

φ(i)[ϕ], φ(j)[χ ]
] = i

∫
d3x

∫
d3y ϕ(x)1(i)(j) (x − y) χ(y) . (85)

For the unsmeared operators, equation (85) implies[
φ(i)(x), φ(j)(y)

] = i1(i)(j) (x − y) . (86)
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From among the states contained inH the physical states are those having non-vanishing
norm,

〈
8f

∣∣ 8f 〉 6= 0, and satisfying the conditionG−
∣∣8f 〉 = 0†. From the definition of the

scalar product (79) one can conclude that the physical degrees of freedom of the theory can
be associated with those eigenvectors of the Wightman function giving a non-vanishing and
positive contribution to the norm and satisfying the gauge condition.

4.1. Electrodynamics

Consider a one-particle state. Since the Wightman function has a domainV +0 ∪ V +µ , such a
state can be written as

|81〉 =
{
0, φα(0)(p)+ φα(µ)(p), 0, 0, 0, . . .

}
with

φα(0)(p) ∈ S
(
V +0

)
φα(µ)(p) ∈ S

(
V +µ

)
. (87)

Its norm is given by

〈81| 81〉 =
∫

d̃p
0 1

2π
√

2p0
φ∗α(0)(p)M

(0)
αβ (p)φ

β

(0)(p)

+
∫

d̃p
µ 1

2π
√

2p0
φ∗α(µ)(p)M

(µ)
αβ (p)φ

β

(µ)(p) . (88)

From the gauge condition
(
∂µA

µ(x)
)− ∣∣8f 〉 = 0, we have

pαφ
α
(0)(p) = 0 . (89)

From equation (89)‡, one can see that the massless partφα(0)(p) of the state does not
contribute to the norm (88), and, consequently, it is unphysical.

The massive part of the state appears in (88) only through a projectorP
(µ)
αβ according

to

〈81| 81〉 = −2
∫

d̃p
µ 1

2π
√

2p0
φ∗α(µ)(p)P

(µ)
αβ (p)φ

β

(µ)(p) (90)

with

P (µ)αβ(p) = 1

2

(
Pαβ + i

µ
Eαβρpρ

)
(91)

P (µ)αρ (p)P
(µ)ρ

β(p) = P (µ)αβ (p) P
(µ)
αβ (p) = P ∗(µ)βα (p) . (92)

We can then conclude that the physical states have mass|µ| and polarization given by the
eigenvector of the projectorP (µ)αβ (p), with non-vanishing eigenvalue.

Solving the eigenvalue problem for the projector (91) explicitly, one obtains

f µ(p) = 1√
2µ2

(
p2

0 − µ2
)

 µ2− p2
0

iµp2− p0p1

−iµp1− p0p2

 eiβ(p) (93)

† For electrodynamicsG = ∂µAµ while for gravityG = ∂µhµν .
‡ And using

φ∗α(0)(p)Eαβρpρφβ(0)(p) =
(p)2

p0

(
φ∗1(0)(p)φ

2
(0)(p)− φ1

(0)(p)φ
∗2
(0)(p)

)
.
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with the normalization

f ∗α(p)fα(p) = −1 . (94)

The phase factorβ(p) has an important role and is not completely arbitrary. As a matter of
fact the infrared behaviour of the eigenvector depends upon the choice of the phase. Taking
the infrared limit, we have

f µ (0) = lim
|p|→0

1√
2


0

−1

−i
µ

|µ|

 exp

(
i

(
β(p)− µ

|µ|θ(p)
))

(95)

with

θ(p) = arctan

(
p2

p1

)
. (96)

Sinceθ(p) is not defined at the origin, one must take

β(p) = µ

|µ|θ(p)+ γ (p) . (97)

In equation (97)γ (p) is an arbitrary but infrared-regular phase factor, which can be chosen
to vanish.

The final result for the polarization vector is then

f µ(p) = 1√
2µ2

(
p2

0 − µ2
)

 µ2− p2
0

iµp2− p0p1

−iµp1− p0p2

 exp

(
i
µ

|µ|θ(p)
)
. (98)

The on-shell polarization vector (98) satisfies

P (µ)µν(p)f
ν(p) = f µ(p) (99)

pµf
µ(p) = 0 (100)

f µ(p)f ∗ν(p) = −P (µ)µν(p) . (101)

Equations (99)–(101) are very useful in computing the generators of the Poincaré group.
One verifies that the contribution of the eigenvector (98) to the norm is positive.

The phase in (98) was first introduced in [3] as a regularization of the field operators.
In our approach it appears directly in the definition of the physical states. In a different
context, polarization vectors consistent with (98) were used in [17, 18].

The polarization vector (98) guarantees the infrared regularity of any on-shell amplitude;
as is clear from equations (60), (61), the off-shell infrared divergences are absent, due to
the gauge invariance and to the presence of a topological mass.

In conclusion, the normalized physical one-particle states of topologically massive
electrodynamics are∣∣8f 1

〉 = {
0, 2π
√
p0a(p)f

α(p), 0, 0, 0, . . .
}
. (102)

Herea(p) is an arbitrary scalar function defined onV +µ and such that
∫

d2p |a(p)|2 = 1.
a(p) plays the role of the one-particle wavefunction.
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4.2. Gravity

The construction of the one-particle state for the gravitational case is very similar to that of
the electrodynamics. Since the Wightman function has a domain given byV +0 ∪ V +µ , this
state can be written as

|81〉 =
{

0, φαβ(0)(p)+ φαβ(µ)(p), 0, 0, 0, . . .
}

with

φ
αβ

(0)(p) ∈ S
(
V +0

)
φ
αβ

(µ)(p) ∈ S
(
V +µ

)
. (103)

Its norm is given by

〈81| 81〉 =
∫

d̃p
0 1

2π
√

2p0
φ
∗αβ
(0) (p)M

(0)
αβµν(p)φ

µν

(0)(p)

+
∫

d̃p
µ 1

2π
√

2p0
φ
∗αβ
(µ) (p)M

(µ)
αβµν(p)φ

µν

(µ)(p) . (104)

The gauge condition
(
∂µh

µν(x)
)− ∣∣8f 〉 = 0 reads

pαφ
αβ

(0)(p) = 0 . (105)

Using equation (105)†, one sees that the massless part of the stateφ
αβ

(0)(p) does not contribute
to the norm, and is indeed unphysical.

Again the norm involves only a projection on the massive part of the state, and reads

〈81| 81〉 = 4
∫

d̃p
µ 1

2π
√

2p0
φ
∗αβ
(µ) (p)P

(µ)
αβµν(p)φ

µν

(µ)(p) (106)

with

P (µ)µναβ(p) = 1

4

{(
PµαP νβ + PµβP να)− PµνP αβ

+ i

2µ

[EµασP νβ + (µ↔ ν)+ (α ↔ β)
]
pσ

}
(107)

P (µ)µνρτ (p)P
(µ)ρτ

αβ(p) = P (µ)µναβ(p) P
(µ)
µναβ(p) = P ∗(µ)αβµν(p) . (108)

We can therefore conclude that physical states have mass|µ| and polarization given by the
eigentensor of the projectorP (µ)µναβ(p) with non-vanishing eigenvalue.

† And

φ
∗µν
(0) (p)

[
2ηµνηαβ −

(
ηµαηνβ + ηµβηνα

)]
φ
αβ

(0)(p) = 2(p)2
[

1

p1p2

(
φ∗01
(0) (p)φ

02
(0)(p)+ φ01

(0)(p)φ
∗02
(0) (p)

)
− 1

p0p1

(
φ∗02
(0) (p)φ

12
(0)(p)+ φ02

(0)(p)φ
∗12
(0) (p)

)
− 1

p0p2

(
φ∗01
(0) (p)φ

12
(0)(p)+ φ01

(0)(p)φ
∗12
(0) (p)

)]

φ
∗µν
(0) (p)

[
ηµαEνβσ + (µ↔ ν)+ (α ↔ β)

]
pσφ

αβ

(0)(p) = 4
(p)2

p0

(
φ∗1λ(0) (p)φ

2
(0)λ(p)− φ1λ

(0)(p)φ
∗2
(0)λ(p)

)
.
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Solving the eigenvalue problem for the projector (107) explicitly, and taking care of the
infrared behaviour of the eigentensor, one obtains

f µν(p) = 1

2µ2

×


p2

0 − µ2 p0p1− iµp2 p0p2+ iµp1

p0p1− iµp2 (p0p1− iµp2)2

p2
0 − µ2

(p0p1− iµp2)(p0p2+ iµp1)

p2
0 − µ2

p0p2+ iµp1 (p0p1− iµp2)(p0p2+ iµp1)

p2
0 − µ2

(p0p2+ iµp1)2

p2
0 − µ2


× exp

(
i2
µ

|µ|θ(p)
)

(109)

with the normalization

f ∗αβ(p)fαβ(p) = 1 . (110)

This is the infrared well defined polarization tensor that has to be used in any perturbative
computation, leading to infrared finite on-shell amplitudes. This eigentensor has the
following important properties:

P (µ)µναβ(p)f
αβ(p) = f µν(p) (111)

pµf
µν(p) = 0 (112)

f µµ(p) = 0 (113)

f µν(p)f ∗αβ(p) = P (µ)µναβ(p) . (114)

One can verify that the contribution of the eigentensor (109) to the norm is positive.
Summarizing, the normalized physical one-particle states of topologically massive

gravity are ∣∣8f 1
〉 = {

0, π
√

2p0a(p)f
αβ(p), 0, 0, 0, . . .

}
(115)

wherea(p) is an arbitrary scalar function defined onV +µ and such that
∫

d2p |a(p)|2 = 1.
This plays the role of the one-particle wavefunction.

Note that the eigentensor of gravity is the tensorial product of two eigenvectors of
electrodynamics:

f µν(p) = f µ(p)f ν(p) . (116)

Mathematically, this stems from the fact that onV +µ one has

P (µ)µναβ(p) = 1
2

(
P (µ)µα(p)P (µ)νβ(p)+ P (µ)µβ(p)P (µ)να(p)) . (117)

Physically, the two theories differ essentially in the spin representation to which they
correspond. Since the spin is a scalar quantity in 2+ 1 dimensions, and since the two
theories correspond to representations of the Poincaré group which are related by a tensorial
product (as expected [3]), the spin of the graviton will be twice that of the photon. We shall
show explicitly in the next section that the states constructed above satisfy this property.
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5. Observables

The last step in the analysis of the two theories is to extract the physical properties of the
states. This is readily done by expanding the fields in normal modes and defining creation
and annihilation operators for the physical states.

We start by observing that a field satisfying the equations of motion can be expanded
in normal modes in a completely general way, once the Wightman function of the theory
is known. In fact, one can write

φ(i)(x) =
∫

d3p

(2π)2
√

2p0

[
W̃ (i)(j)(p)a(j)(p)e

−ipx + W̃ ∗(i)(j)(p)a+(j)(p)eipx
]
. (118)

According to the spectral theorem, the Wightman function can always be written as

W̃ (i)(j)(p) = 2πθ (p0)

N∑
n=1

δ
(
p2− µ2

n

)
Mµn(i)(j)(p) (119)

where theµn have the dimension of a mass, theMµn(i)(j)(p) are Hermitian matrices and
N is the number of massive and massless excitations of the theory†. The field expansion
can then be written as

φ(i)(x) =
N∑
n=1

∫
d̃p

µn
[
Mµn(i)(j)(p)a

µn
(j)(p)e

−ipx +M∗µn(i)(j)a+µn(j) (p)e
ipx

]
. (120)

Using the eigenvectors of theN matricesMµn(i)(j)(p), defined by the eigenvalues problem

Mµn(i)
(j)(p)f

µn(j)

[k] (p) = λµn[k](p)f
µn(i)

[k] (p) p ∈ V +µn (121)

and normalized to‡
f
µn(i)

[k] (p)f
∗µn
[l](i)(p) = ±η[k][ l] p ∈ V +µn (122)

the expansion finally reads

φ(i)(x) =
N∑
n=1

∑
[k]

∫
d̃p

µn
√∣∣λµn[k](p)

∣∣ [aµn[k] (p)f
µn(i)

[k] (p)e−ipx + a+µn[k] (p)f
∗µn(i)
[k] (p)eipx

]
.

(123)

The explicit action of the operatorsaµn[k] [ϕ] and a+µn[k] [ϕ] on the states can be deduced
from that of the fields; the smeared operators

a
µn
[k] [ϕ] =

∫
d2p a

µn
[k] (p)ϕ(p) =

(
a
µn
[k] , ϕ

)
(124)

a
+µn
[k] [ϕ] =

∫
d2p a

+µn
[k] (p)ϕ

∗(p) = (
a
+µn
[k] , ϕ

∗) (125)

act like(
a
+µp
[k] [ϕ] |8〉

)(µ1)···(µn)

n
(p1, . . . , pn)

= ± 2π
√

2p0√
n

n∑
m=1

φ
(µ1)···(µm−1)(µm+1)···(µn)
n−1 (p1, . . . , pm−1, pm+1, . . . , pn)

† As has already been seen, in both our cases we haveµ1 = 0 andµ2 = µ.
‡ Since the internal field metricη(i)(j) is not in general positive defined, one has to consider both signs.
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× η[k][k]√∣∣λµp[k] (pm)
∣∣f µp(µm)[k] (pm) ϕ

∗ (pm) (126)

(
a
µp
[k] [ϕ] |8〉)(µ1)···(µn)

n
(p1, . . . , pn)

= ±√n+ 1
∫

d̃p
µp
η[k][k]

λ
µp
[k](p)√∣∣λµp[k](p)

∣∣
×f ∗µp[k](i)(p)φ

(i)(µ1)···(µn)
n+1 (p, p1, . . . , pn) ϕ(p) . (127)

It then follows that the unsmeared operators act like(
a
+µp
[k] (p) |8〉

)(µ1)···(µn)

n
(p1, . . . , pn)

= ±2π
√

2p0√
n

n∑
m=1

φ
(µ1)···(µm−1)(µm+1)···(µn)
n−1 (p1, . . . , pm−1, pm+1, . . . , pn)

× η[k][k]√∣∣λµp[k] (pm)
∣∣f µp(µm)[k] (pm) δ

2 (p− pm) (128)

(
a
µp
[k] (p) |8〉

)(µ1)···(µn)
n

(p1, . . . , pn)

= ±
√
n+ 1

2π
√

2p0
η[k][k]

λ
µp
[k](p)√∣∣λµp[k](p)

∣∣f ∗µp[k](i)(p)φ
(i)(µ1)···(µn)
n+1 (p, p1, . . . , pn) . (129)

The commutation relations ofaµn[k] [ϕ] and a+µn[k] [ϕ] are[
a
µm
[k] [ϕ], a+µn[l] [χ ]

] = ±δmnη[k][ l]

∣∣λµm[k] (p)
∣∣

λ
µm
[k] (p)

∫
d2p ϕ(p)χ∗(p) (130)

[
a
µm
[k] [ϕ], aµn[l] [χ ]

] = [
a
+µm
[k] [ϕ], a+µn[l] [χ ]

] = 0 (131)

which imply [
a
µm
[k] (p), a

+µn
[l] (q)

] = ±δmnη[k][ l]

∣∣λµm[k] (p)
∣∣

λ
µm
[k] (p)

δ2 (p− q) (132)

[
a
µm
[k] (p), a

µn
[l] (q)

] = [
a
+µm
[k] (p), a

+µn
[l] (q)

] = 0 . (133)

Thus, a+µn[k] (p) and aµn[k] (p) are creation and annihilation operators for the states of mass

|µn| and polarizationf µn(i)[k] (p). The physical Fock space can be constructed by the cyclic

action ofa+µn[k] (p) on the vacuum.
In the next subsections we shall compute, on the physical states, the mean values of the

Poincaŕe charges

Pµ =
∫

d2x T 0µ Mµν =
∫

d2x M0µν (134)

and of the Pauli–Lubanski scalar, which defines the spin through

S = 1

2|µ|EαµνP
αMµν . (135)

Then, by means of the algebra (132), (133), we shall verify that the Poincaré is satisfied on
the space of the physical states.
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5.1. Electrodynamics

The physical field is

A
µ

f (x) =
√

2
∫

d̃p
µ [
a(p)f µ(p)e−ipx + a+(p)f ∗µ(p)eipx

]
. (136)

From the properties off µ(p), one obtains for the physical field

A
µ

f (x)−
1

µ
Eµαβ∂αAfβ(x) = 0 (137)

∂µA
µ

f (x) = 0 (138)

so that the physical excitation has Klein–Gordon dynamics(
�+ µ2

)
A
µ

f (x) = 0 . (139)

The complete Poincaré generators contain terms depending also on the unphysical
components (the massless and the massive with vanishing norm) of the field. Our analysis
enables us to select only the physical parts of the Poincaré generators, which are given by

P
µ

f =
∫

d2p pµa+(p)a(p) (140)

M
ij

f = E ij
∫

d2p

a+(p)
←−−→− i

2

∂

∂θ

 a(p)+ µ

|µ|a
+(p)a(p)

 (141)

M0i
f = tP if +

∫
d2p

a+(p)
←−→i

2
p0∂i

 a(p)+ µ

|µ|
1

|µ| + p0
E i kpka+(p)a(p)

 (142)

and satisfy the Poincaré algebra. The generators (140)–(142) induce the transformation low
required for a spin-one unitary irreducible representation (UIR) of the(2+ 1)-dimensional
Poincaŕe group [19].

On a physical state∣∣8f 1(k)
〉 = a+(k) ∣∣8f 0

〉
(143)

one has 〈
8f 1(k)

∣∣Pµf ∣∣8f 1(k)
〉 = kµ (144)〈

8f 1(k)
∣∣ Sf ∣∣8f 1(k)

〉 = µ

|µ| . (145)

Therefore,a+(k) creates a photon with mass|µ|, four-momentumkµ, spin µ/|µ| and
polarizationf µ(k). This is the physical excitation of the theory already found in [3].

It is important to stress that the algebra realization exhibited in this paper is the only
one compatible with the closure of the Poincaré algebra. The phase choice performed in
section 4 not only makes the polarization vector infrared well behaved, but also is the phase
choice that allows the Poincaré algebra to close. If we did not include the regularization
phase in the definition of thef µ(p), the Poincaŕe algebra would present the well known
anomaly obtained in [3], and would fail to provide the correct transformations for a UIR of
the Poincaŕe group. In this case, the generators become

P
µ

f =
∫

d2p pµa+(p)a(p) (146)
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M
ij

f = E ij
∫

d2p a+(p)

←−−→− i

2

∂

∂θ

 a(p) (147)

M0i
f = tP if +

∫
d2p

a+(p)
←−→i

2
p0∂i

 a(p)+ E i kpk
pmpm

a+(p)a(p)

 (148)

and the Poincaré algebra acquires the anomaly

1 = 2πµ2Sa+(0)a(0) (149)

in the commutator of two boosts[
M0i
f ,M

0j
f

]
= −i

(
M
ij

f − E ij1
)
. (150)

Consequently, in any phenomenological computation, if we want a true representation of
the Poincaŕe algebra, we need to use the polarization vector (98).

5.2. Gravity

The physical field is

h
µν

f (x) = 2
∫

d̃p
µ [
a(p)f µν(p)e−ipx + a+(p)f ∗µν(p)eipx

]
. (151)

From the properties off µν(p) follow the properties of the physical field

h
µν

f (p)−
1

2µ

[Eµαβ∂αhfβν(x)+ Eναβ∂αhfβµ(x)
] = 0 (152)

∂µh
µν

f (x) = 0 (153)

h
µ

f µ(x) = 0 (154)

and the physical excitation has Klein–Gordon dynamics(
�+ µ2

)
h
µν

f (x) = 0 . (155)

The physical Poincaré generators are those of the electrodynamic case, except for a
factor two in the spin terms. The Poincaré algebra is satisfied anda+(k) creates a graviton
with mass|µ|, four-momentumkµ, spin 2µ/|µ| and polarizationf µν(k) [3]. As before, the
spin-dependent phase choice performed in section 4, to regularize the infrared behaviour of
the polarization tensor, allows the closure of the Poincaré algebra.

6. Conclusion

The detailed analysis of the free quantum states of the topologically massive theories
performed in this paper has provided us with the explicit form of the one-particle states
for these theories. We have shown that the states are infrared well behaved representations
of the Poincaŕe group with the well known values for the physical charges (mass and
spin). These states define the polarization vector and tensor needed in phenomenological
computations. The phase, regularizing the infrared behaviour of the physical states, allows
also for the closure of the Poincaré algebra on the physical states.

The derivation of the electrodynamical physical states might have relevant consequences
for the knowledge of the bound-state spectrum of the theory. In particular, the existence
of photon–fermion bound states suggested in [5] might be proved by the analysis of the
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effective non-relativistic fermion–photon potential. In fact, the inclusion of the regularizing
phase in the photon polarization vector simplifies dramatically the angular dependence of
such a potential. We shall discuss how the regularization phase affects the bound-state
spectrum of the theory in a forthcoming paper [20].

For gravity it would be interesting to compare our results with an analogous treatment
of the gauge theoretical first-order formulation [6]. The comparison of the free quantum
states of the two theories might provide important information on the relation between the
first-order and metric gravity at the quantum level.
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